Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber
نویسندگان
چکیده
منابع مشابه
Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber.
This Letter describes the fabrication of a microelectromechanical systems (MEMS) bimaterial terahertz (THz) sensor operating at 3.8 THz. The incident THz radiation is absorbed by a metamaterial structure integrated with the bimaterial. The absorber was designed with a resonant frequency matching the quantum cascade laser illumination source while simultaneously providing structural support, des...
متن کاملA dual band terahertz metamaterial absorber
We present the design, fabrication and characterization of a dual band metamaterial absorber which experimentally shows two distinct absorption peaks of 0.85 at 1.4 THz and 0.94 at 3.0 THz. The dual band absorber consists of a dual band electric-field-coupled (ELC) resonator and a metallic ground plane, separated by an 8μm dielectric spacer. Fine tuning of the two absorption resonances is achie...
متن کاملDynamical Control of Terahertz Metamaterial Resonance Response Using Bimaterial Cantilevers
In this work, we report a novel method for the dynamical control of the resonant electrical response of terahertz (THz) metamaterials. Our approach is based on planar arrays of split-ring resonators (SRRs) coupled with microfabrication methods to create a bimaterialcantilever-based THz metamaterial switch. Our device exhibits a tunable resonant response centered at 0.75 THz and operates by modi...
متن کاملMicroelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy
Dichroic polarizers and waveplates exploiting anisotropic materials have vast applications in displays and numerous optical components, such as filters, beamsplitters and isolators. Artificial anisotropic media were recently suggested for the realization of negative refraction, cloaking, hyperlenses, and controlling luminescence. However, extending these applications into the terahertz domain i...
متن کاملGraphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber.
In this paper, few-layer porous graphene is integrated onto the surface of a metasurface layer to provide a uniform static electric field to efficiently control liquid crystal, thereby enabling flexible metamaterial designs. We demonstrate a tunable cross-shaped metamaterial absorber with different arm lengths driven by this combined metasurface and graphene electrode. The resulting absorber su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Letters
سال: 2012
ISSN: 0146-9592,1539-4794
DOI: 10.1364/ol.37.001886